解析函数是指在某个区域内可导的函数,它在理论和实际问题中应用广泛,具体定义如下:定义2 若函数f(z)在点z0的某个邻域内(包含点z0)处处可导,我们称f(z)在点z0处解析,也称它在z0全纯或正则,并称z0 是f(z) 的解析点,若函数f(z)在点z0处不解析,则称点z0 是f(z)的奇点; 若函数f(z)在区域D内的每一点都解析,则称函数f(z)在区域D内解析,或称f(z)是区域D内的解析函数......
2025-09-30
定义3 设α是任意一个复数,定义幂函数为
w =zα =eαLnz(z
0).
在α为正实数时,对z =0的情况进行规定:zα =0.幂函数是指数函数与对数函数的复合函数,根据对数函数的定义,有
w =zα =eαLnz =eα(ln z+2kπi) =eα ln z·e2αkπi,(k为整数)
由于Lnz = ln z+2kπi是多值的,所以w = zα也是多值的,且所取的不同数值的个数等于e2αkπi 所取的不同数值的个数.当α取不同的值时,幂函数有以下几种情形:
(1) 当α=n为正整数时,w =zα =zn 是单值函数.
(2) 当α=-n(n为正整数)时,w =zα =
也是单值函数.
(3) 当
(n为正整数)时,w =zα =
是根式函数,且(https://www.chuimin.cn)
它在k =0,1,··· ,n-1时取不同的值,是具有n个分支的多值函数.
(4) 当α =
(m和n为互质的整数,n >0)时,zα =
它在k =0,1,··· ,n-1 时取不同的值,是具有n个分支的多值函数.
(5) 当α是无理数或复数时,w =zα是无穷多值的,且
下面讨论幂函数的解析性.
由于对数函数Lnz的每个单值分支在除去原点与负实轴的z平面内是解析的,所以幂函数w =zα 的每个单值分支在除去原点与负实轴的z平面内也是解析的,并且
例4 计算
和(1+i)i的值.
解
相关文章
解析函数是指在某个区域内可导的函数,它在理论和实际问题中应用广泛,具体定义如下:定义2 若函数f(z)在点z0的某个邻域内(包含点z0)处处可导,我们称f(z)在点z0处解析,也称它在z0全纯或正则,并称z0 是f(z) 的解析点,若函数f(z)在点z0处不解析,则称点z0 是f(z)的奇点; 若函数f(z)在区域D内的每一点都解析,则称函数f(z)在区域D内解析,或称f(z)是区域D内的解析函数......
2025-09-30
复变函数的定义在形式上与一元实函数一样,只是将自变量和因变量都推广到了复数域.定义1 设D为复平面上的非空集合[1],若有一个确定的法则存在,按照这一法则,对于D 内的每一个复数z =x+iy,都有确定的复数w =u+iv 与之对应,我们称复变数w是z的复变函数,记为w =f(z).其中z称为自变量,w为因变量,集合D称为w = f(z)的定义域,与D 中所有复数z对应的w值的集合G 称为w =f......
2025-09-30
|z-1|<|z+3|; -1 <arg z <-1+π;0 <arg(z-1)<,且Rez <3; 2 ≤|z|≤3;Imz ≤2; |3z+i|<3;|z+2|+|z-2|≤6; 1 <|z-i|<3.解 是无界单连通区域; 是无界单连通区域; 是有界的单连通域; 有界的多连通闭区域; 是无界单连通闭区域; 有界单连通区域; 是有界闭区域,不是区域; 是有界多连通区域.......
2025-09-30
我们通常称z = x+iy为复数z的代数形式.除此之外,复数z还有多种表示形式,下面介绍复数的几种表示方法.由于复数z =x+iy由一个有序实数对(x,y)唯一确定,在取定平面直角坐标系xOy时,实数对(x,y)可视为平面直角坐标系中的两个坐标组成的序对,这就建立了复数z与平面上的点的一一对应关系,于是对于任意一个复数z =x+iy,都对应于平面上的一点P(x,y),故可用实数对形式(x,y)表示......
2025-09-30
设z1 =r1eiθ1,z2 =r2eiθ2,··· ,zn =rneiθn是n个非零复数,用数学归纳法可以得到这n个复数的乘积为特别地,当这n个复数相同时,我们把n个相同的复数z的乘积称为z的n次幂,记作zn.设z =reiθ,则zn =rneinθ =rn(cos nθ+i sin nθ).当r =1时,即z =cos θ+i sin θ,有(cos θ+i sin θ)n =cos nθ+i......
2025-09-30
【主要内容】设f′(x)>0(x∈(a,b))或f′(x)≥0(x∈(a,b),但仅在有限个点处取等号),则函数f(x)在(a,b)内单调增加;设f′(x)<0(x∈(a,b))或f′(x)≤0(x∈(a,b),但仅在有限个点处取等号),则函数f(x)在(a,b)内单调减少.注 (ⅰ)以上结论在a=-∞或b=+∞时仍成立;(ⅱ)当f(x)在[a,b]上连续时,端点x=a,x=b可以并入到f(x)的......
2025-09-30
所谓出版产品需求函数,是指在某一特定时期内,某种出版产品的各种可能的需求量和决定这些需求量的因素之间的关系。出版产品需求函数表示的是出版产品的市场需求量Qd的大小是由出版产品价格、消费者收入、广告宣传费、出版替代品价格决定的。现以某杂志的需求函数为例,来说明出版产品需求函数的应用。......
2025-09-29
在第一节中我们知道,复数与平面内的点或向量建立了一一对应关系,所以我们对复数、平面内的点和向量不加区别.除此之外,复数也可与球面上的点一一对应,并用球面上的点来表示,具体做法如下:取一个球面,使之与复平面z相切于原点,球面上的一点S与原点重合,如(图1-5).通过点S作一条垂直于复平面的直线与球面交于另一点N,我们称N为北极,S为南极.对于复平面内任何一点z,现在用直线段将点z与北极N连接起来,那......
2025-09-30
相关推荐