照片中用焊芯直径为3.2mm的焊条作为熔滴尺寸的参照。焊条电弧焊时,药皮成分所形成的冶金条件对熔滴行为另一方面的影响,是使碳的激烈氧化形成CO气体,产生对熔滴过渡的气体动力,成为熔滴过渡时的另一个重要的力学因素——第二主导力。下面将要讨论焊条电弧焊爆炸过渡与喷射过渡形成机制:气体动力产生的原理,气体动力对形成熔滴的爆炸过渡与喷射过渡以及对形成飞溅现象的直接影响。......
2025-09-29
焊条电弧焊时电弧对焊条的加热有三种方式:一是电弧由极性斑点析出的热对焊芯直接进行加热;二是电弧由极性斑点直接加热熔滴,通过熔滴的热对流间接地对焊芯与药皮加热;三是弧柱的辐射对焊条药皮加热。电弧对焊条三种不同的加热方式中,焊条对电弧热的吸收效率是不同的,其中以电弧极性斑点对焊芯直接加热的吸热效率最高,通过熔滴的热对流间接地对焊芯及药皮加热,其加热的效率最差。
表2-4 焊条电弧焊熔滴过渡形态与飞溅的关系

注:“▲▲”表示强烈的飞溅,“▲”表示飞溅程度一般,“-”表示基本上不产生飞溅。
①钛型、钛钙型、氧化铁型结构钢焊条可以出现熔池气体逸出飞溅,钛钙型不锈钢焊条一般不会出现。
②钛钙型结构钢焊条粗熔滴过渡只占有较小的比例。
③高纤维素焊条是以喷射过渡为主要过渡形态,但还会出现滴状过渡和爆炸过渡。
电弧对焊条的加热方式与焊条端熔滴行为有关,焊条电弧焊时,不同的熔滴过渡形态焊条对电弧热的吸收率是不同的。图2-42是焊条不同过渡形态电弧对焊条加热机制的影响的示意图。图2-42a是粗熔滴过渡的情况,这时电弧极性斑点处于熔滴的底部,电弧极性斑点首先对熔滴进行加热,然后过热的熔滴通过热对流对焊芯和药皮进行加热,即使当熔滴脱离焊芯向熔池过渡之后,在焊芯端部仍存在着残留的熔体,就是说在熔滴整个过渡周期内除了熔滴与熔池短路的瞬间外,整个燃弧时间内电弧对焊芯和药皮的加热都是通过液体金属的对流间接进行的,其电弧的热损失于对熔滴的加热,过热熔滴的散热损失,使电弧对焊芯和药皮的加热效率降低。
当熔滴为渣壁过渡时(图2-42b),熔滴尺寸减小,熔滴往往不能占满焊芯的整个端面,在这种条件下电弧的极性斑点有机会对焊芯端面直接进行加热,加快了焊芯的熔化速度,使得焊芯更超前于药皮的熔化,而导致深套筒的形成;另外渣壁过渡时形成很深的套筒,使弧柱能够对套筒内侧的药皮进行加热,弧柱通过热辐射也参与对焊条药皮的加热,提高了电弧的热利用率,这是渣壁过渡焊条所独有的电弧加热特征,而短路过渡时弧柱不可能参与对焊条的加热。(https://www.chuimin.cn)
当焊条熔滴喷射过渡时(图2-42c),药皮中产生的大量气体使焊芯端部的液体金属在套筒内被吹碎,并从套筒内喷射出来,在焊芯端部很少有熔滴金属残留,电弧极性斑点有最多的机会直接对焊芯加热,加热效率很高,焊芯的熔化速度加快,套筒增长,但是由于套筒内气流对电弧的冷却作用,不能像渣壁过渡时那样充分利用电弧柱对药皮的辐射进行加热,显然这一因素又使得焊条对电弧热利用率有所降低。
通过以上的分析说明,焊条电弧焊时焊条的吸热效率和焊条熔化效率与熔滴过渡形态有关,渣壁过渡时焊条的热效率最高,喷射过渡其次,粗熔滴过渡和爆炸过渡时焊条的吸热效率最低。
应该指出,某种焊条的热效率具体地说包括两方面的含意,一是焊条电弧焊时电弧本身的发热效率,二是焊条对电弧热的吸收效率。前者涉及电弧本身发热机制,而本节中讨论的是后者——熔滴过渡形态对电弧热的吸收效率的影响,并不是说焊条的热效率只取决于焊条的熔滴过渡形态。
以上讨论了影响焊条工艺性的焊接电弧的稳定性、飞溅、焊条热效率等三个主要因素,除此之外,焊条工艺性还涉及焊条的工艺稳定性、焊接时的烟雾等诸多方面,焊条的工艺稳定性将在第4章不锈钢焊条工艺性中加以讨论,焊接时的烟雾将在第5章中进行详细讨论。

图2-42 焊条不同熔滴过渡形态电弧对焊条加热机制的影响示意图
a)粗熔滴过渡,极性斑点通过熔滴热对流间接加热焊芯和药皮 b)渣壁过渡,极性斑点对焊芯直接加热、熔滴热对流间接对焊芯和药皮加热以及弧柱对药皮的辐射加热 c)喷射过渡,电弧极性斑点对焊芯直接加热,电弧加热效率高,但气流对电弧的冷却作用,电弧热利用率有所降低
相关文章
照片中用焊芯直径为3.2mm的焊条作为熔滴尺寸的参照。焊条电弧焊时,药皮成分所形成的冶金条件对熔滴行为另一方面的影响,是使碳的激烈氧化形成CO气体,产生对熔滴过渡的气体动力,成为熔滴过渡时的另一个重要的力学因素——第二主导力。下面将要讨论焊条电弧焊爆炸过渡与喷射过渡形成机制:气体动力产生的原理,气体动力对形成熔滴的爆炸过渡与喷射过渡以及对形成飞溅现象的直接影响。......
2025-09-29
由图2-24a看出,停留在焊条端部的熔滴从第1帧开始发生气体的强烈逸出,至第5帧熔滴完全被破碎,在第5、6帧中看到破碎的熔滴在爆炸力的推动下向熔池过渡。图2-25 焊条熔滴发生爆炸过渡的高速摄影照片(三)焊条样品:E4303结构钢焊条,φ4mm;直流反接,I=180~190A;拍摄速度:1000f/s。熔滴的爆炸行为使熔滴的尺寸不均匀,导致熔滴的不均匀短路,这是熔滴的爆炸过渡形态重要特征之一。据统计熔滴爆炸过渡的频率一般可超过50s-1。......
2025-09-29
由于熔滴的爆炸过渡形态也有短路过程发生,所以具有爆炸过渡的JHJ42201试验焊条的电压概率密度分布曲线3也具有双驼峰的特点。图2-37是用汉诺威分析仪测试得到的焊条电弧焊四种典型过渡形态的焊接电流概率密度分布叠加图。渣壁过渡的E308-12焊条和喷射过渡的TYD132焊条都不存在短路过渡,当然不会出现熔滴短路过渡引起的大电流和电弧重燃时形成的小电流,电流概率密度分布曲线比较收敛。......
2025-09-29
图2-11是焊条电弧焊渣壁过渡的高速摄影单帧照片。一般钛型不锈钢焊条采用正常焊接参数时熔滴渣壁过渡频率大约为9~11s-1。E4324高效铁粉结构钢焊条具有完全的渣壁过渡形态,是渣壁过渡形态代表性的焊条之一。图2-13是E4324高效铁粉焊条熔滴进行渣壁过渡过程的连续高速摄影照片,在照片中看到在焊条端部同时存在的两个熔滴先后进行过渡的情景。......
2025-09-29
首先使焊条与工件短路,电压迅速下降至短路电压Ud,电流迅速增至最大值Isd,然后又逐渐下降到稳定短路电流Iwd。由负载到短路的短路电流Ifd影响熔滴过渡,Ifd太大,熔滴飞溅严重,焊缝成形变坏,甚至焊件烧穿、电弧不稳。Umin太小,熔滴过渡后电弧复燃困难。其他类型的弧焊电源不存在此问题,无需考核。......
2025-09-29
图2-1所示为选取的钛钙型结构钢焊条在长弧焊时粗熔滴过渡的高速摄影单帧照片,图2-1a是焊芯直径为4mm、药皮外径为6.4mm的E4303焊条,由图可直观地看出,熔滴的短路过渡明显的特征是熔滴体积十分粗大,熔滴的直径明显地超过了焊芯直径,而接近焊条药皮的外径。......
2025-09-29
熔滴过渡只发生在焊丝与熔池接触的瞬间,而在电弧空间则不发生熔滴过渡。当保护气体的成分发生变化时,电弧形态随之发生变化,影响熔滴过渡的表面张力也随之发生变化,从而引起短路过渡频率的变化。无论是短路过渡、喷射过渡,还是使用惰性气体或惰性气体中加入了少量的活性气体时产生的粗滴过渡,熔滴过渡的轨迹都是沿着焊丝轴向的;但当使用CO2作为保护气体......
2025-09-29
不同弧焊电源对电弧动载的响应过程不相同。我们需要了解弧焊电源动特性对焊接过程的影响,进而从保证引弧、燃弧、熔滴过渡能处于良好状态的客观要求出发,对弧焊电源动特性提出若干参考性的指标,用以指导设计制造和评价工作。短路电流峰值对熔滴过渡的影响前面已分析,不再重复。......
2025-09-29
相关推荐