数学教学与学习会经历课前准备、课上磨合、课后巩固3个阶段.针对每个阶段,教师都会设计不同的环节以提升数学学习的效果.那么,数学运算素养如何在各个教学环节中渗透呢?......
2023-08-17
数学运算素养作为基本素养存在于各个章节之中,是不可忽视的重要能力之一.从必备知识角度考察数学运算素养,可以关注以下原则:由具体到抽象,由法则到算理,由常量到变量,由单向思维到逆向、多向思维.过程中,运算法则是基础,解决问题的思路是目标.在评价中,还应警惕学生片面追求运算速度,只有在理解的基础上,形成好的思维品质,速度才有意义.
【案例2-18】平面中轨迹方程的求法
解析几何问题是高考的必考问题,既有能力立意的问题,也有基础知识的考查.从必备知识的角度审视解析几何,除了知道圆锥曲线的定义、性质、公式之外,还应了解求解解析几个问题的同性通法.以下将以求轨迹方程为例,从必备知识角度体会数学运算素养.
问题:求以下曲线轨迹方程.
(1)在平面直角坐标系xOy中,动点P到点(1,0)的距离是到点(-1,0)的距离的3倍,求动点P的轨迹方程.
(2)已知△ABC的顶点A(-3,0)、B(3,0),若顶点C在抛物线y2=6x上移动,求△ABC的重心的轨迹方程.
(3)已知定点A(-3,0),M、N分别为x轴、y轴上的动点(M、N不重合),且AN⊥MN,点P在直线MN上,,求动点P的轨迹方程.
分析 单动点的轨迹问题,通常用直接法和待定系数法(定义法);双动点的轨迹问题多用代入法;多动点的轨迹问题则是参数法和轨迹法的综合应用.
当t=0时,M与N重合,不满足条件.
所以动点P的轨迹方程为y2=4x.x≠0.
有关高中数学核心素养的文章
数学教学与学习会经历课前准备、课上磨合、课后巩固3个阶段.针对每个阶段,教师都会设计不同的环节以提升数学学习的效果.那么,数学运算素养如何在各个教学环节中渗透呢?......
2023-08-17
通过图形的表征与变换,理解图形的特征、简化运算过程、将“数”与“形”的问题自由转化,都体现了直观想象核心素养在数学问题解决过程中关键能力的作用.【案例4-15】构造几何模型,破解思维瓶颈问题:设点P是函数的图像上的任意一点,点Q(2a,a-3),(a∈R),则|PQ|的最小值为__________.解:函数的图像是以C(1,0)为圆心,半径等于2的圆在x轴以下的半圆,含点(-1,0)、(3,0).......
2023-08-17
(一)抽象1.理想化的抽象理想化的抽象即指抽象层次性的简约阶段,由实际的事物或现象引出抽象概念的方法,其中包括对于真实事物或现象的简约化与完善化,从而得出的数学概念与现实原型未必完全符合,如“没有大小的点”“没有宽度的线”“没有厚度的面”等几何概念都是简约化的结果.平面几何中已经证明任意三角形三个角的平分线交于一点,但真实世界的经验告诉我们,无论绘图员多么细心、采用多么精确的工具,他所画图形中的三......
2023-08-17
图6-2通过前期的点列计算的猜想,再探究严谨的推理论证.因为f(-x)=f,所以f为偶函数;当x∈[0,+∞)时,y=|x|,y=x2为增函数,所以y=ln为增函数,y=为减函数,且函数值为正,所以为增函数,故在[0,+∞)上为增函数.从而不等式f>f即为|x|>|3-2x|,解得1<x<3.......
2023-08-17
基于数学核心素养的教学就是要培养学生用数学的眼光看世界,因此,数学教师首先要能够用数学的眼光看世界,用数学的眼光看身边的事物,并在平时教学中能够注重基于教学内容的实际背景向学生渗透数学与实际生活的联系.(一)数学建模的教学原则数学建模活动作为《普通高中数学课程标准(2017年版)》课程内容之一,要求以课题形式,小组合作方式开展教学,最终以研究报告或小论文等多种形式呈现.数学建模活动的主要特征体现在......
2023-08-17
美国的科普学家马丁·加德纳(Martin Gardner)认为,在数学教育的过程中要想避免那些没有价值并且枯燥的东西,老师就需要给学生提供一些有趣的智力题或是游戏性的教学,另外也可以提供一些比较搞笑的笑话或是悖论,这些都可以调动学生学习的积极性,唤醒学生的学习欲望.这样就肯定了数学游戏在高中数学教学中的作用.数学知识的抽象性和逻辑性决定了数学课堂的枯燥和无味,但随着素质教育的不断推进,数学课堂也在......
2023-08-17
“数学建模”中“数学”是“建模”的限制词,因此需要先考察“建模”,“建模”中,动词“建”指建立、建构或者构造;名词“模”指模型,因此建模就是建立模型或者建构模型的意思.(一)模型《辞海》(2009)对“模型”一词有3项释义.(1)与“原型”相对研究对象的替代物原型,即客观存在的对象客体;模型是具有原型相似特征的替代物,是系统或过程的简化、抽象或类比表示.(2)根据实物、设计图或设想,按比例、形态或......
2023-08-17
思维是指理性认识的过程,是人脑对客观事物间接的和概括的反映,属于人脑的基本活动形式.数学思维则是指用数学思考问题和解决问题的思维活动形式.数学思维既能动地反映客观世界,又能动地反作用于客观世界.数学运算中强调探究运算思路,通过探究可以激发思维的灵活性、广阔性,锻炼思维的敏捷性和深刻性,形成思维的独创性、批判性和灵活性.问题:书架上有5本书,现在再插入3本不同的书,有多少种不同的方案?......
2023-08-17
相关推荐