混沌是非线性动态系统所特有的一种运动形式,它既是普遍存在又是极具复杂性的现象。混沌学是随着现代科学技术的迅猛发展,尤其是在计算机技术的出现和普遍应用的基础上发展起来的,并得到人们广泛的关注和研究。这一结果被认为是动力系统中具有混沌特征的第一征兆。在这一时期,混沌学作为一门新兴的科学正式诞生。这些实验研究不仅丰富了混沌理论,而且极大地拓宽了混沌的应用领域和范围。......
2023-11-22
近年来,国内外研究学者发现,在黏滞系统[197,198]、电极-电解液和电磁波[199]等中都存在分数阶的动力学行为。常微分系统与分数阶系统有着本质的区别,常微分方程绝大多数属性和结构一般不能简单应用于分数阶微分系统。因此,分数阶系统的研究引起了越来越多的研究者的兴趣。最近,许多学者研究发现一些分数阶系统具有混沌行为[200-206]。例如,分数阶蔡氏电路在2.7阶时可产生混沌[200];非自治Duffing系统的阶数低于2阶时能产生混沌行为[203];Li和Chen等发现4维分数阶Rössler系统出现超混沌的最低阶数为3.8[204]。此外,分数阶Lorenz系统[201]、分数阶Chen系统[202]、3维分数阶Rössler系统[205]和分数阶Liu系统[206]等都具有混沌现象。在上述的分数阶系统动力学行为分析中[200-206],系统在不同阶数时的动力学属性是通过观察系统数值模拟的相图和计算最大Lyapunov指数来获得的。在本节中,基于分数阶系统的稳定性理论,分析了一个新的分数阶系统[81]取不同阶数时的动力学属性。首先,运用分数阶系统的稳定性理论分析计算出分数阶系统产生混沌的阶数范围。而后,再通过数值仿真实验和计算最大Lyapunov指数来进一步验证理论分析的有效性。对这个分数阶系统分析发现,在这个新的3维系统中存在混沌的最低阶数是2.46,也发现了不同的周期行为。并且,基于拉普拉斯变换理论,设计了一个非线性反馈控制器,完成了这个分数阶混沌系统的广义投影同步控制。(www.chuimin.cn)
有关混沌系统控制及其在信息安全中的应用的文章
混沌是非线性动态系统所特有的一种运动形式,它既是普遍存在又是极具复杂性的现象。混沌学是随着现代科学技术的迅猛发展,尤其是在计算机技术的出现和普遍应用的基础上发展起来的,并得到人们广泛的关注和研究。这一结果被认为是动力系统中具有混沌特征的第一征兆。在这一时期,混沌学作为一门新兴的科学正式诞生。这些实验研究不仅丰富了混沌理论,而且极大地拓宽了混沌的应用领域和范围。......
2023-11-22
在上述研究的基础上,本章研究了一类具有多扇区非线性输入不确定混沌系统的追踪控制问题,利用线性分离和滑模控制相结合的方法,设计了滑模变结构控制器,从理论上证明了该控制器的有效性。并通过对具有多扇区非线性输入的不确定Rssler系统和超混沌Chen系统的追踪混沌控制,进一步验证了该控制器的有效性。......
2023-11-22
混沌密码技术虽然获得了很大进展,但在发展中也出现了诸多问题:1)混沌的离散化问题。这些不利因素都是由混沌自身引起的,但目前还缺少对适合用于密码系统中的混沌映射的研究。虽然混沌密码学还存在着众多的问题,但作为一个新兴的学科,这些问题的存在是允许的和合理的,混沌密码学丰富了密码学的内容,从一个新的角度研究了数据加密技术。随着混沌密码学的进一步发展和现有问题的解决,相信它会有广阔的应用前景。......
2023-11-22
从前面的混沌控制和同步的介绍中,可以看出经过十多年的研究,国内外学者已经提出了很多混沌控制和同步的方法,并已成功地进行应用尝试。在如何保持原系统的运动特性,发掘和利用混沌系统的特征方面还有待进一步深入的研究。因此,缺少普遍适用的严密的理论去分析和研究混沌系统的控制策略。因此,很多混沌系统的控制策略缺乏对鲁棒性问题的考虑,在实际情况下,难以应用。......
2023-11-22
由于混沌的奇异特性,尤其是对初始条件扰动极端敏感的特性,使得人们一度认为混沌是不可控的。该方法开创了混沌控制的先河,人们称之为OGY方法[5]。这些开创性的工作激发起了人们对混沌控制理论与实验研究的浓厚兴趣,并向世人展现了诱人的应用前景。由混沌运动的遍历性,系统的状态将再次回到xf的邻域,控制系统重新启动。......
2023-11-22
混沌控制及其应用的研究尽管取得了许多成果,也表明了其广阔的应用前景。在如何保持原系统的运动特性,发掘和利用混沌系统的特征方面还有待进一步深入的研究。因此,很多混沌系统的控制策略缺乏对鲁棒性问题的考虑,在实际情况下,难以应用。4)混沌映射是连续的非线性动力系统,在多数的基于混沌的加密算法中是将连续的混沌映射离散化后用于加密算法。目前还缺乏对混沌密码系统进行设计和分析的完善理论或有效工具。......
2023-11-22
由于混沌系统的奇异性和复杂性至今还没有被人们彻底了解,因此到目前为止还没有一致的、严格的定义。已有的定义仅仅从不同的侧面来反映混沌的性质,下面介绍几个具有代表性的混沌定义。Li-Yorke定义是影响较大的混沌数学定义,它是从区间映射出发进行定义的。......
2023-11-22
混沌理论与密码学之间存在着紧密联系[89]。因此,可用混沌映射开发新的公钥密码算法。混沌和密码学之间具有的天然的联系和结构上的一些相似,启示着人们把混沌应用于密码学领域。尽管如此,我们仍然能够利用混沌的特性来设计序列密码或分组密码,特别是对分组密码来说,利用混沌的拓扑传递性来快速地置乱和扩散明文数据,以达到改变明文统计特性的目的。......
2023-11-22
相关推荐